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INTRODUCING A NEW APPROACH TO SOLVE NONLINEAR

VOLTERRA-FREDHOLM INTEGRAL EQUATIONS

A.A. CHERAGHI TOFIGH1, R. EZZATI2

Abstract. In this paper, we present a new class of orthogonal basis functions (NOBFs) for

solving the nonlinear Volterra-Fredholm integral equations of the second kind (NVFIE2). To

do this, first, we construct the operational matrix of integration. Then, by using the proposed

method, we reduce the original problem to a nonlinear system of algebraic equations. Finally,

to show the applicability of this method, we give some numerical examples.

Keywords: block-pulse functions, Volterra-Fredholm integral equations, integral operational
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1. Introduction

Volterra-Fredholm integral equations (VFIE) occur in many scientific applications such as the

population dynamics, spread of epidemics, and semi-conductor devices [14]. In the literature,

many methods have been used for solving these equations with sufficient accuracy and efficiency

[7, 8, 9, 12, 17]. Molbahrami in [10] suggested direct computation method for solving a general

nonlinear Fredholm integro-differential equation under the mixed conditions. Babolian et.al.

[1] have applied Haar wavelets and collocation method to solve NVFIE2. Maleknejad et.al.

[5] have suggested a computational method for system of Volterra-Fredholm integral equations.

Applying new basis functions for solving VFIE have introduced by Paripour et.al. in [11]. In

[6], Maleknejad et.al. proposed a new computational method to obtain the numerical solution of

NVFIE. Kauthen in [4] used continuous time collocation method for solving VFIE. Ezzati et.al.

applied Chebyshev polynomials for solving NVFIE in [2]. In[15], Yalsinbas developed numerical

method for solving NVFIE by using Taylor polynomials. In [16], the authors have been used

Legendre wavelets to solve VFIE. In [13], by using Chebyshev wavelets operational matrix, the

authors proposed a new method for solving integral equations.

In this paper, first, we introduce a new class of orthogonal basis functions. Then, we propose

a new approach based on the operational matrix of integration of these basis to solve NVFIE2

f(x) = g(x) + λ1

x∫
0

K1(x, t)[f(x)]
n1dt+ λ2

1∫
0

K2(x, t)[f(x)]
n2dt, (1)

where the function g ∈ L2[0, 1], the kernels K1,K2 ∈ L2([0, 1]× [0, 1]) are known functions, and

f is the unknown function must be determined and n1, n2 are positive integers. Clearly, the
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operational matrix of integration, P , is as follows:

t∫
0

Ψ(s)ds ≃ PΨ(t),

where Ψ(t) = [ψ1(t), ψ2(t), ..., ψn(t)] and the matrix Pn×n can be determined on the basis of

the new class of orthogonal functions uniquely. The set ψ1(t), ψ2(t), ..., ψn(t) are the orthogonal

basis functions, on the interval [0,1]. Clearly, by expanding f and known function in Eq.(1)

according to new functions, Eq.(1) reduces to a system of algebraic equations.

The remainder of this article has been organized as follows: In Section 2, we will review the

fundamental concepts from Block pulse functions. In Section 3, we will introduce a new class of

orthogonal basis functions. In Section 4, we drive the operational matrix of integration of the

new basis functions. In Section 5, we present function approximation by using these orthogonal

basis functions. The efficiency of the proposed method is shown in Section 6 by some numerical

examples. Finally, Section 7 gives our concluding remarks.

2. Preliminaries

Definition 2.1. Block-pulse functions (BPFs), ϕi(t), i = 1, 2, ..., n, on the interval [0, 1) are

defined as [3]:

ψi(t) =

{
1, ih ≤ t < (i+ 1)h,

0, otherwise,
(2)

where i = 1, 2, 3, ..., n is an arbitrary positive integer number and h = 1
n .

The basic properties of BPFs are as follows:

(1) The BPFs are disjointed with each other in [0, 1), i.e

ψi(t)ψj(t) = δijψi(t),

where i = 1, 2, . . . ,n and j = 1, 2, . . . ,n and δij is Kronicker delta.

(2) The BPFs are orthogonal function in the interval t ∈ [0, 1), i.e.:

1∫
0

ψi(t)ψj(t)dt = 0 fori ̸= j and i, j = 1, 2, 3, ..., n.

(3) If n→ ∞, then the BPFs functions are complete; i.e. for every g ∈ L2([0, 1)),the identity of

Parseval holds,
T∫
0

g2(t)dt =

∞∑
i=1

g2i ∥ ψi(t) ∥2,

where

gi =
1

h

T∫
0

g(t)ψi(t)dt. (3)

We can write the first n terms of BPFs as n-vector form:

Ψ(t) = (ψ1(t), ψ2(t), ..., ψn(t))
T , t ∈ [0, T ). (4)
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Eq. (4) and disjointness property shows that

Ψ(t)ΨT (t) =



ψ1(t) 0 ... 0

0 ψ2(t) ... 0

. . ... .

. . ... .

. . ... .

0 0 ... ψn(t)


n×n

.

Furthermore, we have

Ψ(t)TΨ(t) = 1, (5)

Ψ(t)ΨT (t)G = DGΨ(t), (6)

where DG is diagonal matrix with a constant vector in diagonal entries G = (g1, g2, ..., gn)
T ,

and

Ψ(t)TBΨ(t) = B̃Φ(t), (7)

where elements of the diagonal entries of matrix B in an n-vector form is called B̃ .

3. Introducing new class of basis functions (NBFs)

Here, we introduce a new class of basis functions (NBFs), and also we show some of their

properties.

Definition 2.2. The m-collection of new basis functions over interval [0,1), the ith left and

right functions are introduced as:

ψ1i(x) =

{
(i+1)3−( x

h
)3

3i2+3i+1
, ih ≤ x < (i+ 1)h,

0, otherwise,
(8)

ψ2i(x) =

{
( x
h
)3−i3

3i2+3i+1
, ih ≤ x < (i+ 1)h,

0, otherwise,
(9)

where i = 0, 2, 3, ..., n−1, h = 1
n , and ψ1i(x) and ψ2i(x) are the terms ith of ψ1(x) and ψ2(x),

respectively, and NBFs are defined over [0,1). We have:

ψ1(x) = [ψ10(x), ψ11(x), ..., ψ1n−1(x)]
T , ψ2(x) = [ψ20(x), ψ21(x), ..., ψ2n−1(x)]

T , (10)

and

ψ(x) = [ψ1(x), ψ2(x)]T . (11)

By using Eqs.(8) and (9), we conclude that

ψ1i(x) + ψ2i(x) = ψi(x),

where ψj(x) is the jth BPFs and it is defined in Eq. (2). So, we conclude that

n−1∑
i=0

ψ1i(t) +

n−1∑
i=0

ψ2i(t) = 1, 0 ≤ t < 1.
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It is obvious that ψ1i(t) and ψ2j(t), i, j = 0, 1, 2, ..., n are disjoint. The orthogonality of NBFs

can be derived immediately from

1∫
0

ψ1i(x)ψ1j(x)dx ≃ 5

13
hδi,j ,

1∫
0

ψ1i(x)ψ2j(x)dx = 0, (12)

1∫
0

ψ2i(x)ψ2j(x)dx ≃ 4

13
δi,j ,

1∫
0

ψ2i(x)ψ1j(x)dx = 0, (13)

where i = 0, 1, 2, ..., n− 1, j = 0, 1, 2, , n− 1 and δi,j denotes the Kronecker delta function.

From definition (3.1), we have :

ψ1i(jh) =

{
1, i = j,

0, i ̸= j,

ψ2i(jh) =

{
1, i = j − 1,

0, i ̸= j − 1,

where i = 0, 1, 2, ..., n− 1 and j = 0, 1, 2, ..., n− 1.

Consider the first n terms of NBFs in Eq.(10). According to disjointness property of NBFs, we

have:

ψ1(x)ψ1T (x) ≃



ψ10(x) 0 0 ... 0

0 ψ11(x) 0 ... 0

0 0 ψ12(x) ... 0

. . . .

. . . .

. . . .

0 0 0 ... ψ1n−1(x)


n×n

= diag(ψ1(x)),

ψ1(x)ψ2T (x) = 0n×n.

Similarly, we have:

ψ2(x)ψ2T (x) ≃ diag(ψ2(x))

ψ2(x)ψ1T (x) = 0n×n.

Therefore

ψ(x)ψT (x) ≃
[
diag(ψ1(x)) 0

0 diag(ψ2(x))

]
2n×2n

.

ψ(x)ψT (x)W ≃ W̃ψ(x), (14)

where W is a 2n-vector and W̃ = diag(W ). Besides, it can be concluded that for an 2n × 2n

matrix A, we have:

ψT (x).A.ψ(x) ≃ ÂT .ψ(x), (15)

where Â is an 2n-vector such that its elements are diagonal entries of matrix A.
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4. Operational matrix of integration

From orthogonality of ψ1(x) and ψ2(x) defined in Eqs. (12) and (13), we obtain

1∫
0

ψ1i(x)ψ2j(x)dx ≃
1∫

0

ψ2i(x)ψ1j(x)dx ≃ 2

13
hδi,j , (16)

D =
1∫
0

ψ(x)ψT (x)dx ≃ h
13

[
5In×n 2In×n

2In×n 4In×n

]
2n×2n

.

Also, we have:

(i+1)h∫
ih

ψ1i(t)dt ≃
4

7
h,

(i+1)h∫
ih

ψ2i(t)dt ≃
3

7
h,

t∫
0

ψ1i(r)dr ≃


0, 0 ≤ t < ih,
1
2(

6
7)h, ih ≤ t < (i+ 1)h,

4
7h, (i+ 1)h ≤ t < 1.

Therefore
t∫

0

ψ1i(r)dr ≃
h

14
[0, ..., 0, 6, 8, ..., 8, 0, ..., 0, 8, ..., 8].ψ(t),

and similarly

t∫
0

ψ2i(r)dr ≃
h

14
[0, ..., 0, 3, 4, ..., 4, 0, ..., 0, 4, ..., 4].ψ(t).

So, we have:

t∫
0

ψ(r)dr ≃ P.ψ(t), (17)

where P2n×2n is matrix of operational integration and given by

P = h
14



6 8 ... 8 0 8 ... 8

0 6 ... . 0 . ...

0 0 ... 8 0 . ... 8

. 0 ... 6 0 . ... 0

3 4 ... 4 0 4 ... 4

0 3 ... 4 0 ... 4

0 0 ... 4 0 0 ... 4

0 0 ... 3 0 0 ... 0


2n×2n

.
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5. Function approximation

We can expand an arbitrary real and bounded function g(x) ∈ L2[0, 1) as:

g(x) ≃
n−1∑
i=0

G1iψ1i(x) +

n−1∑
i=0

G2iψ2i(x) = G1Tψ1(x) +G2Tψ2(x) = GTψ(x), (18)

where G is a 2n-vector given by G = [G1T , G2T ] , and ψ1(x) and ψ2(x) are defined in Eq.(10).

The coefficients in G1 and G2 can be computed by the function g(x) at points ih and (i+ 1)h

for arbitrary h and i. We can substitute

G1i = g(ih),

G2i = g((i+ 1)h).

Lemma 5.1. Assume that g(x) ∈ L2[0, 1) can be approximated by using NBFs as:

g(x) ≃
n−1∑
i=0

G1iψ1i(x),

then [g(x)]p, p ∈ N can be approximated as:

[g(x)]p ≃
n−1∑
i=0

G1piψ1i(x),

Proof. The proof is similar to the proof of [11] �

Now, let k(x; t) be an arbitrary function of two variables defined on L2([0; 1)× [0; 1)). Clearly

it can be expanded by NBFs as the following form:

k(x; t) ≃ ψT (x)kψ(t),

where ψ(x) and ψ(t) are NBFs vectors with h = 1
n . Also k is the 2n× 2n coefficients matrix as

follows:

K =

[
k11 k12

k21 k22

]
,

where

[k11]nm = K(nh,mh),

[k12]nm = K(nh, (m+ 1)h),

[k21]nm = K((n+ 1)h,mh),

[k22]nm = K((n+ 1)h, (m+ 1)h).

Now, consider the nonlinear Volterra-Fredholm integral equations:

f(x) = g(x) + λ1

x∫
0

K1(x, t)[f(x)]
n1dt+ λ2

1∫
0

K2(x, t)[f(x)]
n2dt, 0 ≤ x < 1, (19)

where g(x) ∈ L2[0, 1), K(x, t) ∈ L2([0, 1) × [0, 1)) are known functions, f(x) is the unknown

function and n1, n2 are positive integers. By approximating functions g(x), K(x, t), [f(x)]n1 ,

[f(x)]n2 in the matrix form, we have:

g(x) ≃ GTψ(x), (20)

K1(x, t) ≃ ψT (x)K1ψ(t), (21)

K2(x, t) ≃ ψT (x)K2ψ(t), (22)

f(x) ≃ F Tψ(x), (23)
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[f(x)]n1 ≃ F T
n1
ψ(x), (24)

[f(x)]n2 ≃ F T
n2
ψ(x), (25)

where Fn1 and Fn2 are column vector such that elements are n1, n2th powers of the elements of

the vector F respectively and T denotes transpose of the vector. By substituting Eqs. (20)-(25)

into Eq. (19), we obtain:

F Tψ(x) = GTψ(x) + λ1

x∫
0

ψT (x)K1ψ(t)ψ
T (t)Fn1dt+ λ2

1∫
0

ψT (x)K2ψ(t)ψ
T (t)Fn2dt

F Tψ(x) = F Tψ(x) + λ1ψ
T (x)K1

x∫
0

ψ(t)ψT (t)Fn1dt+ λ2ψ
T (x)K2

1∫
0

ψ(t)ψT (t)Fn2dt,

by using Eqs. (14) and (12) we have:

F Tψ(x) = GTψ(x) + λ1ψ
T (x)K

x∫
0

F̃n1ψ(t)dt+ λ2ψ
T (x)K2DFn2 .

Also, by using Eq (17), we have:

F Tψ(x) = GTψ(x) + λ1ψ
T (x)KF̃n1Pψ(x) + λ2ψ

T (x)K2DFn2 .

By assuming B = KŨn1P , and using Eq. (15), we will get:

F Tψ(x) = GTψ(x) + λ1B̃
Tψ(x) + λ2(K2DFn2)

Tψ(x).

so

F = G+ λ1B̃ + λ2K2DFn2 .

This equation is a system of algebraic nonlinear equations. Clearly, we can solve this equation

by using known methods as Newtons iteration method.

6. Numerical examples

Here, we apply the proposed method in Section 5 to solve some nonlinear VFIE of the second

kind. To show the efficiency of the presented method, we compare the numerical results with

the exact solution.

Example 6.1. [11] Consider the following NFIE of the second kind :

u(x) = − 1

30
x6 +

1

3
x4 − x2 +

5

3
x4 − 5

4
+

x∫
0

(x− t)u2(t)dt+

1∫
0

(x+ t)u(t)dt, (26)

with the exact solution u(x) = x2 − 2, 0 ≤ x < 1.

To compare the numerical results with the exact solution, see Table 1 and Figure 1 .
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Figure 1. Exact solution and approximate solution for Example 6.1, m=32.

Table 1. The numerical results of Example 6.1 for m=32.

xi Exactsolution Aproximate solution Absolute error

0.1 -1.99000000 -1.99014527 0.00014527

0.2 -1.96000000 -1.96023105 0.00023105

0.3 -1.91000000 -1.91023558 0.00023558

0.4 -1.84000000 -1.84015858 0.0001585

0.5 -1.75000000 -1.75000000 0

0.6 -1.64000000 -1.64015457 0.00015457

0.7 -1.51000000 -1.51023360 0.00023360

0.8 -1.36000000 -1.36023492 0.00023492

0.9 -1.19000000 -1.19015731 0.00015731

Example 6.2. [11] Consider NVIE of the second kind

f(t) = sin(πt) +
1

5

t∫
0

cos(πt)sin(πu)f3(u)du, (27)

with the exact solution f(t) = sin(πt) + 20−
√
391

3 cos(πt), 0 ≤ t < 1.

In Figure 2, we show the numerical results. Also, in Table 2, we compared the numerical

solution obtained by proposed method in Section 5 and the method of [11].
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Figure 2. A comparison between exact and approximate solutions for Example 6.2, m=32.

Table 2. The approximate results of Example 6.2 with m=32.

xi Exact solution Aproximate solution Absolute error The method of [11]

0 0.07542668 0.07531365 0.00011302 0.090008

0.1 0.38075203 0.37637141 0.00438062 0.30670

0.2 0.64880672 0.64523101 0.00357571 0.58640

0.3 0.85335168 0.85097223 0.00237944 0.81029

0.4 0.97436464 0.97324575 0.00111888 0.95475

0.5 1.00000000 1.00000000 0 0.10000

0.6 0.92774838 0.92740060 0.00034778 0.93312

0.7 0.76468229 0.76455509 0.00012720 0.76912

0.8 0.52676377 0.52702376 0.00025999 0.52969

0.9 0.23728195 0.23772625 0.00044430 0.24007

Example 6.3. [11] In this example, we consider NFIE of the second kind

f(t) = et+1 −
1∫

0

et−2uf3(u)du, (28)

with the exact solution f(t) = et, 0 ≤ t < 1.

The numerical results are shown in Figure 3. In Table 3, we compare the numerical results

obtained from the proposed method and the method of [11].
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Figure 3. A comparison between exact and approximate solutions for Example 6.3, m=32.

Table 3. The approximate results for Example 6.3 with m=32.

xi Exact solution Aproximate solution Absolute error The method of [11]

0 1.00 1.00006105 0.00006105 1.00121629

0.1 1.10517091 1.10378743 0.00138348 1.10580428

0.2 1.2214027 1.22021692 0.00118583 1.22232420

0.3 1.34985880 1.34903388 0.00082492 1.35112684

0.4 1.49182469 1.49143597 0.00038872 1.49345921

0.5 1.64872127 1.64882193 0.00010065 1.65072661

0.6 1.8221188 1.82190416 0.00021463 1.82424236

0.7 2.01375270 2.01343983 0.00031286 2.01610170

0.8 2.22554092 2.22528372 0.00025720 2.22818176

0.9 2.45960311 2.45951527 0.00008784 2.46257191

Example 6.4. [14] Consider the following integral equation

f(t) = et − t

192
(e2 + 1) +

1∫
0

tuf2(u)du, (29)

with the exact solution f(t) = et, 0 ≤ t < 1.

To compare the approximate results with the exact solution, see Table 4 and Figure 4.
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Figure 4. A comparison between exact and approximate solutions for Example 6.4, m=32.

Table 4. The approximate results for Example 6.4 with m=32.

xi Exact Aproximate Absolute error

0 1.00 1 0

0.1 1.10517091 1.10370285 0.00146806

0.2 1.2214027 1.22010776 0.00129499

0.3 1.34985880 1.34889936 0.00095944

0.4 1.49182469 1.49127526 0.00054943

0.5 1.64872127 1.64863410 0.00008716

0.6 1.8221188 1.82168838 0.00043041

0.7 2.01375270 2.01319494 0.00055776

0.8 2.22554092 2.22500857 0.00053247

0.9 2.45960311 2.45920825 0.00039486

7. Conclusions (mandatory)

In this article, we introduced a new class of orthogonal basis functions to solve nonlinear

VFIE of the second kind. This method is reduces a given nonlinear VFIE of the second kind to

a system of nonlinear algebraic equations with the sparse coefficient matrix. The efficiency and

simplicity of this method is illustrated by solving some numerical examples with known exact

solutions.

The advantage of this method are low cost of setting up the equations without applying any

projection method such as Galerkin, collocation, etc. Also, the system equation of this method

is a lower triangular system. Therefore the count of operations is very low. Finally, this method

can be extended and applied to systems of Volterra-Fereholm integral equations of the second

kind. Also the property in lemma 5.1 is the other advantage.
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